Normal Forms and Lie Groupoid Theory

نویسنده

  • Rui Loja Fernandes
چکیده

In these lectures I discuss the Linearization Theorem for Lie groupoids, and its relation to the various classical linearization theorems for submersions, foliations and group actions. In particular, I explain in some detail the recent metric approach to this problem proposed in [6]. Mathematics Subject Classification (2010). Primary 53D17; Secondary 22A22.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GROUPOID ASSOCIATED TO A SMOOTH MANIFOLD

‎In this paper‎, ‎we introduce the structure of a groupoid associated to a vector field‎ ‎on a smooth manifold‎. ‎We show that in the case of the $1$-dimensional manifolds‎, ‎our‎ ‎groupoid has a‎ ‎smooth structure such that makes it into a Lie groupoid‎. ‎Using this approach‎, ‎we associated to‎ ‎every vector field an equivalence‎ ‎relation on the Lie algebra of all vector fields on the smooth...

متن کامل

The Monodromy Groupoid of a Lie Groupoid

R esum e: Nous d emontrons que, sous des circomstances g en erales, l'union disjoint des couvertes universales des etoiles d'un groupo de de Lie admet le structure d'un groupo de de Lie auquel que le projection a une propri et e de monodromie sur les extensions des morphismes emousse. Ca compl etes une conte d etailles des r esultats annonc es par J. Pradines. Introduction The notion of monodro...

متن کامل

Orbital Normal Forms for a family of-zero Singularity

Consider a Dynamical system x'=F(x,µ) such that its linear part has a pair of imaginary eigenvalues and one zero eigenvalue (Hopf zero singularity). Recently, the simplest normal form for this singular system has been obtained by sl(2) Lie algebra theory and the decomposition of space into three invariant subspaces. The normal form of this singular system is divided into three general cases. In...

متن کامل

Equivariant cohomology over Lie groupoids and Lie-Rinehart algebras

Using the language and terminology of relative homological algebra, in particular that of derived functors, we introduce equivariant cohomology over a general Lie-Rinehart algebra and equivariant de Rham cohomology over a locally trivial Lie groupoid in terms of suitably defined monads (also known as triples) and the associated standard constructions. This extends a characterization of equivari...

متن کامل

Equivariant K-theory, Groupoids and Proper Actions

In this paper we define complex equivariantK-theory for actions of Lie groupoids. For a Bredon-compatible Lie groupoid G, this defines a periodic cohomology theory on the category of finite G-CW-complexes. A suitable groupoid allows us to define complex equivariant K-theory for proper actions of non-compact Lie groups, which is a natural extension of the theory defined in [24]. For the particul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015